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RESEARCH ON NONLINEAR DIFFERENTIAL EQUATIONS

Robert H. Martin, Jr.
Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27650

The main topic of research investigated during this project is the
development and application of abstract techniques in order to study the
behavior of solutions to nonlinear systems of parabolic equations. The
literature generated by this prolect includes the published articles [l]. - (4],
the accepted articles [5] - [6] and the article (7] that is to be submitted.

The underlying themes in each of these results are the concepts of invariant
sets, inequalities, and stability for solutions to differential equations.

Most of the abstract techniques connected with these ideas were developed earlier
in the articles (8] - [10]. Therefore, we restrict our attention in this report
to the description of results obtained by applying these abstract techniques to
particular equations.

In the mathematical modeling of a cellular control process with positive

feedback one obtains a system of ordinary differential equations of the following

type:
z'l = -z, ¢ ha (zm) . 21(0) = “129

(1) 3'12- —az, +zy 22(0) = n,20

z'm e, P WS zn(O) = 20

*Numbers in brackets refer to the bibliography located at the end of this report.
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where a >0 fori=1],,..,m, 03], and

(2) n(r) = r7(1+r%)™ for all r>0.

Several authors have investigated the existence of and the stability properties
of nonnegative critical points (equilidrium solutions) to this feedback system.
Howvever, the earlier works on this model did not use the fact that solutions to
this equation preserve inequalities: if z(.;n) is the solution to (1) for each

given nonnegative initial value n = (ni)lm' then z(t;n) > z(t;m) (componentwise)

for all t > 0 whenver n>™8 (componentwise). This observation allows one to
both improve and simplify previous results. Also, abstract techniques allow much
more general equations to be studied. First we consider the associated reaction-
diffusion systen.
BBy ™ A3 0 = GW, * ho(u:n)
3*.“2 = d23xxu2 = au, +u, (t,x) ¢ [0,2)x(0,1)
k. ) RPN MR el fate T e R

J.u =43 u =-au *+u
tn mXXm mmnm m-1

subject to the initial conditions
(&) 11(3.::) = xl(x):O....,um(O,x) = Xm(x)?_O for xe(0,1)
and the boundary conditions

{ 5 ¥
poaxui\t.o) - qoui(“'a) = plaxui(t.l) + qlui(t.l) = 0

(S5)
for all t>0 and { = 1,...,m

where i}y >0 and PPy € {0, 1} are such that P 1 whenever po = 0 and

% = 1 whenever pl = 0, Consider also the linear eigenvalue problem

0' (x) + 2¢(x) = 0, D<x<l
(6)
p,? (0) - qoo(o) = p,¢ (1) + q10(1) =0




and let A= Xl denote the first eigenvalue (note that A > 0 and that A, = 0

1 1

only if the bdboundary conditions are 0'(0) = 0'(1) = 0). The techniques and
results in (3] show that the following behavior patterns for solutioms to (3) -
(5) in valid:

THEOREM 1. Suppose that o= 1 in the definition (2) of B, that 4,,...,d are
positive constants in equation (3), and that Xl is the first eigenvalue of

equation (8).

m

Itn (ci + kldi) > 1 then for each nonnegative initial value
i=]

X = (x‘)ml the solution u = (ui)m, to (3) - (5) exists on

(0,») x [0,1] and u(t,x) =+ © as t = = uniformly for xe [0,1].

(11} It (a, + \,di) < 1 then there is a unique nontrivial, nonnegative

i
=]

equilidbrium solution ¢ = (¢, )" o0 (3) = (5):

- g *

i b () (w (x))
= 41*1 (x) a, b, (x) + hl vn\x),

. s e . & = e & IR R

amtm(x) + tm_l(x)

' 1)
P 1(o) - qo'i(O) =P, 1(1) + qlti(l) =0 1 P
Moreover, Oi(x) > 0 for all x and i, and fdr each nonnegative,

nontrivial initial value x = (xi)m the solution u = ( exists

u, )®
1 - i §

on [0,») x [0,1] and u(t,x) =+ ¢ (x) a8 t = @, uniformly for xe{0,1).
It {is of interest to note that when ¢ = 1 the behavior of the solutions to the

ordinary differential equation (1) is precisely the same as that of the reaction-
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diffusion model if one replaces a, by a, + xldi in (1),

A result similar to Theorem 1 can be obtained by considering time delays in

the feedback terms. Again suppose o= 1 and consider the delay differential

equation.
. & » o \ &
vy (t) = - a,w () +n (v (t-r)), v,(s) = ¢ (s), -r <820
L v, (¢) = < azwg(t) . vl(t-rl), v2(a) = ‘2(3)‘ -1r,2820
v | - ’ ( - ) = -
v.'t) av (t) +v , (t-r .), vo(s) = ¢ (s), -r <s<0

vhere r. > 0 and ¢, is a given nonnegative function on [—ri,O] for each { = 1,...,m.

The results for the system (7) are completely analogous to the corresponding
reaction-diffusion system (3) - (5):

THEOREM 2: Consider the time delay differential equation (7).

) I£® a, > 1 then for each nonnegative initial function ¢ = (g, )"
g %2> £

(a1

{
-

the solution w = (vi)nl to (7) exist on [0,») and w(t) = 8 as t + =,

- °i< 1 then there is a unique nonnegative, nontrivial vector

e (8 . on [-r,,0]

-
§ = (& )7, such that w(t) 28 for £20 (and ¢, (s) 26

L ]
for { = 1,...,m) is a constant solution to (7). Moreover, § >0

for all { = 1,...,m and if v is a nontrivial solution to (7) then
wit) > 6% ag ¢ »+ =, This result is from the article [6].
Results have also been obtained on the behavior of solution to a nonlinear

parabolic system that arises in the study of gas-liquid reactions. The fundamental

equation has the form




i

a‘u(t.x) = d.lanu(t.x) - kvy(ult,x), vit,x))
(8) i

dvityx) = a3 vit,x) + ky(ult,x), vit,x)) 0<x<0

subject to the bdboundary conditions

u(t,0) = 8 3xv(t..o) =0
(9) t>0

u(t,o0) = 0 vit,0) = 0
and the initial conditions

(10) u(0,x) = uo(x). v(0,x) = vo(x). O<x<a.

Here it is assumed that 8, bo and k are given positive constants, o is either

a positive number or + », and y is a real value C2 function on [0, aol x (0, bol

such that

(yl) y(O,v) = v(u.bo} = 0 for all (u,v) ¢ [0, a ] x [0, bO) and

(¥2) 3uv(u.v) > 0 and avy(u.v)<0 for all (u,v) ¢ (0, ao) x 10, bo).
(The typical example of such a function vy is y(u,v) = th(bo-v)q vhere p,q > 1).
The initial conditions uo and vo are also assumed to satisfy 0 < uo(x) < ao and

0 <v (x) <b for almost all x ¢ [0,0].

o] Q

The analysis of this system fits nicely into an abstract setting. Let Ll =

~[((0,0); ".Rzl be the Banach space of all measurable functions ¢ = (01. 02) from

L
(0, o) into R? such that

{«)
elly !$ (o (x)]+ [ay(x)]] ax < =
1 (3
and define DC L” by D = {(s;, ¢,) e L7: 0 4, (x) ¢ a and 0 < ¢,(x) £ b a.e.
on (0, 3)}. Note that D is a closed convex subset of Ll (with empty interior!)
and that D is bounded only in case g < =.If (4,, 4,) and (¥,,¥,) are in 1t ve

write ¢ < ¢ only in case ¢, (x) < y.(x) and ¢.(x) < y.(x) a.e. on (0,0). Concerning
- 1 e 2 -2

the fundamental existence and behavior of solutions to (8) = (10) we have the

following result:
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THEOREM 3. Suppose that (yl) and (y2) are satisfied. Then for each initial

value (uo, vo) €D the system (8) - (10) has a unique solution (u,v) and this

solution exists on (0, =) x (0,0) and satisfies (u(t,.), v(t,.)) € D for all

©20 (i.e., Ofu(t,x)<a and o_gv(t.x)f_bo for all t >0 and O<x<g). Moreover,
i S(:)(uo.vo) g (u(t,.),v(t,.)) for each initial value (uo.vo) in D, then S =

{8(%):t >0} is a semigroup of nonlinear operators mapping D into D that is non-
expansive and order preserving:

(1) S(e+s)(u ,v ) = S(t)S(s)(uo.vo) for all t;s>0 and (uo.vo)cD;

(412} |[s(¢)(u ,vo) - s(t)(ul,vl)lglill{uo.vo) - (ul.vl)!zl for all

€20 and (u ,v ), (w,v,)eD; and

S()(u v ) €8(t)(u ,v,) whenever £20 and (u_,v_), (u,,v.) eD with

(uo.vo} < (ul.vl).
The proof of this theorem follows from the results in (8] and is indicated in the
article [5].
The behavior of solutions to (8) - (10) as t + = has also be investigated in
(S] as well as in [1]. The analysis of this behavior divides naturally into two
parts: The film theory (when ¢ < ®») and the penetration theory (vhen o= =),
THEOREM 4. Suppose that the conditions and notations in Theorem 3 are satisfied.

(1) If o < = there is a unique equilibrium solution ¢ = (tl. 02) to (8) -

(10): [1.¢: il*l“ -ky(9) = 0 and dztzn +ky(9) = 0 on [0,0],
tl(O) =a, 02'(0) = 0, and tl(a) = 02(3) = 0] and for each (uo.Vo) €D,

S(t)(uo.vo) + ¢ as t + » yniformly for xe [0,q].
(1) If o = ®» there is no equilidbrium solution to (8) - (10) and for each

(ugsv ) D, [S(t)(u v )] (x) + (a,b,) as t + @ uniformly for x in each

bounded subset of [0, =),

e ——rr




The results in Theorem 4 as well as more general results can be found in the

paper [5].
In (2) abstract techniques are applied to a mathematical model of a gas

exchange system. This system can be put in the following form. Suppose that

)3 and

B8P 9 Ty Tqn and kl‘ Ko k3. are positive numbers; that 8 = (8i 1

3 3 3

ye (Yi)B, are C* functions from R°x R° into R°; and that u = (u,)31 and

3

v=(v are C* on([0,=). If :s(zi)3l and w = (vi)3, map [0,2] into R”, the

3
i) 3

y3

problem is to determine the existence of functions u = (“1' and v = (v )3

L - i

3

from (0, =»]x [0, 2] into R~ and a function ¢ from [O,=) x [0,2] into R such that

the parabolic svstem

) + Bi(u,v)

¢!
.

u, - 3 (ecu
x

X1 t >0, O<x<t

/ and { = 1, 2, 3.
xxvi - ki3xvi + yi;u,v)

is satisfied along with the boundary conditions
u(t,0) = u(t), v(t,0) = v(t)

axu(:.lf' = 31'1(:,3:) = o(¢,2) = 0

the initial conditions
(13) u(0,x) = 2(x) and v(0,x) = w(x)
as well as the side condition

(1h) ula'_t.,x) + u2(t,x) + ua(t.x) g P for >0, O<x<i.

The following existence result can be found in [2]:
THEOREM 5. In addition to the suppostions and notations in the preceding paragraph,

let R and R, be positive numbers, let

10 oo 3

= 3 =
Ay ={(EeR™: § + & *+E; =P and §1s &y E5 200

A, = (¢eR®: Ox g, <R, for i =1, 2, 3),

i

e i s g e i

Lo T e e e
o,




e

11

and assume also that the following is valid:

(L) (z(x), wix))e AjxA, for O<x<t and (u(t), vit)e AjxA, for all

t2>0; and
(82) 1If (g,n) e A;xA, and Je ({1, 2, 3} then X" 0 implies BJ(E.n)lo;
ny = 0 implies YJ(C.n)_’_O; and n, = R, implies YJ(E. n)<0.

Then the system (10) - (14) has solution on [0,=)x [0,2].

As opposed to considering this system as a differential equation with side
condition, it is shown in (2] that one can establish theexistence of solutions by
using the abstract theory of invariant sets for evolution systems (see [9]).

In (4] the (strict, componentwise) positiveness of reaction diffusion systems
of the form

-
"

d.u, =4, 4u, + F (u,%,) on (0,#)xQfor i=1,...,m
- - - -

f s \
(15 t 1

with initial and boundary conditions
(16) u=08on (0,»)x3 and u= y on {0} x A
are considered (as well as extension of such systems) where Q is a smooth bounded

domain in Rn, 4 is the Laplacian operator on @, V is the gradient operator, and

d, is a positive constant for each i = 1,...,m. Criteria is given to insure that

i
if the initial value x is nontrivial componentwise nonnegative on I then each
component of the solution u is strictly positive for positive time: u (o,x)>» ©

(but not identically zero) implies that ui(t.x) >0 for all ¢>0, xel and i = 1,...m.

This results are obtain by comparison with the ordinary differential equation.

(17) 2'(t) = g(t,z(t)), t>0
where g = (Bi)ml is defined on [0,»)x B" by
g, (t,8) = F,(t,x ,& ©) for all (t,E)¢ (0,#)x R and £ = 1,...,m.

(the point X, is some given point in Q). This type of maximum principle extends

a similar result established in [3].
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